1、由于祖冲之博学多才的名声,被南朝宋孝武帝派至当时朝廷的学术研究机关华林学省做研究工作,后来又到总明观任职。
2、《宋史·楚衍传》中说“于《九章》《缉古》《缀术》《海岛》诸算经尤得其妙。天圣(1023-1031)初造新历”。
3、晚年,齐明帝曾令他巡行四方,兴造大业,以利百姓,但因发生战争而作罢。这时他已是风烛残年,不久即于南齐永元二年(公元500年)逝世,享年七十二岁。
4、吴秋仪同学的幽默让现场气氛“升温”,听完她讲述华罗庚卖棉花的故事,同学们忍不住夸赞:“原来沉浸在数学学习中的华罗庚是那么的可爱!”大家被华罗庚的钻研精神打动,一颗要勤奋学习的种子在同学们的心中生根。
5、阿基米德拿一块金块和一块重量相等的银块,分别放入一个盛满水的容器中,发现银块排出的水多得多。于是阿基米德拿了与王冠重量相等的金块,放入盛满水的容器里,测出排出的水量;再把王冠放入盛满水的容器里,看看排出的水量是否一样,问题就解决了。
6、祖冲之从小就受到很好的家庭教育。爷爷给他讲"斗转星移",父亲领他读经书典籍,家庭的熏陶,耳濡目染,加之自己的勤奋,使他对自然科学和文学、哲学,特别是天文学产生了浓厚的兴趣,在青年时代就有了博学的名声。
7、从这时起,一直到南朝齐初年,他花了较大的精力来研究机械制造,重造出了用铜制机件传动的指南车,发明了一天能走百里的"千里船"和"木牛流马"、水碓磨(利用水力加工粮食的工具),还设计制造过漏壶(古代计时器)和巧妙的欹器。
8、祖冲之一点也不害怕。他严肃地说:“你如果有事实根据,就只管拿出来辩论。不要空话吓唬人嘛。”
9、圆周率的应用很广泛,尤其是在天文、历法方面,凡牵涉到圆的一切问题,都要使用圆周率来推算。如何正确地推求圆周率的数值,是世界数学史上的一个重要课题。中国古代数学家们对这个问题十分重视,研究也很早。在《周髀算经》和《九章算术》中就提出径一周三的古率,定圆周率为即圆周长是直径长的三倍。此后,经过历代数学家的相继探索,推算出的圆周率数值日益精确。
10、祖冲之的闰周精密程度极高,按照他的推算,一个回归年的长度为32428141日,与今天的推算值仅相差46秒。一直到南宋的《统天历》,才采用了比这更精确的数据。
11、祖冲之按照刘徽的割圆术之法,设了一个直径为一丈的圆,在圆内切割计算。当他切割到圆的内接一百九十二边形时,得到了“徽率”的数值。但他没有满足,继续切割,作了三百八十四边形、七百六十八边形……一直切割到二万四千五百七十六边形,依次求出每个内接正多边形的边长。最后求得直径为一丈的圆,它的圆周长度在三丈一尺四寸一分五厘九毫二秒七忽到三丈一尺四寸一分五厘九毫二秒六忽之间,上面的那些长度单位我们现在已不再通用,但换句话说:如果圆的直径为那么圆周小于14159大大不到千万分之它们的提出,大大方便了计算和实际应用。 要作出这样精密的计算,是一项极为细致而艰巨的脑力劳动。我们知道,在祖冲之那个时代,算盘还未出现,人们普遍使用的计算工具叫算筹,它是一根根几寸长的方形或扁形的小棍子,有竹、木、铁、玉等各种材料制成。通过对算筹的不同摆法,来表示各种数目,叫做筹算法。如果计算数字的位数越多,所需要摆放的面积就越大。用算筹来计算不象用笔,笔算可以留在纸上,而筹算每计算完一次就得重新摆动以进行新的计算;只能用笔记下计算结果,而无法得到较为直观的图形与算式。因此只要一有差错,比如算筹被碰偏了或者计算中出现了错误,就只能从头开始。要求得祖冲之圆周率的数值,就需要对九位有效数字的小数进行加、减、乘、除和开方运算等十多个步骤的计算,而每个步骤都要反复进行十几次,开方运算有50次,最后计算出的数字达到小数点后七位。今天,即使用算盘和纸笔来完成这些计算,也不是一件轻而易举的事。让我们想一想,在一千五百多年前的南朝时代,一位中年人在昏暗的油灯下,手中不停地算呀、记呀,还要经常地重新摆放数以万计的算筹,这是一件多么艰辛的事情,而且还需要日复一日地重复这种状态,一个人要是没有极大的毅力,是绝对完不成这项工作的。 这一光辉成就,也充分反映了我国古代数学高度发展的水平。祖冲之,不仅受到中国人民的敬仰,同时也受到世界各国科学界人士的推崇。 浑仪是测量天体方位的仪器。经过历代的发展的演变,到宋朝,浑仪的结构已经变得十分复杂,三重圆环,相互交错,使用起来很不方便。为此,沈括对浑仪作了比较多的改革。他一方面取消了作用不大的白道环,把仪器简化、分工,再借用数学工具把他们之间的关系联系起来(“省去月道环,其侯月之出入,专以历法步之”);另一方面又提出改变一些环的位置,使它们不挡住观测视线。沈括的这些改革措施为仪器的发展开辟了新的途径。后来元朝郭守敬于元世祖至元十三年(公元1276年)创制的新式测天仪器——简仪,就是在这个基础上产生的。 物理成就
12、 在化学方面,沈括也取得了一定的成就。他在出任延州时候曾经考察研究漉延境内的石油矿藏和用途。他利用石油不容易完全燃烧而生成炭黑的特点,首先创造了用石油炭黑代替松木炭黑制造烟墨的工艺。他已经注意到石油资源丰富,“生于地中无穷”,还预料到“此物后必大行于世”,这一远见已为今天所验证。另外,“石油”这个名称也是沈括首先使用的,比以前的石漆、石脂水、猛火油、火油、石脑油、石烛等名称都贴切得多。在《梦溪笔谈》中有关“太阴玄精”(石膏晶体”的记载里,沈括形状、潮解、解理和加热失水等性能的不同区分出几种晶体,指出它们虽然同名,却并不是一种东西。他还讲到了金属转化的实例,如用硫酸铜溶液把铁变成铜的物理现象。他记述的这些鉴定物质的手段,说明当时人们对物质的研究已经突破单纯表面现象的观察,而开始向物质的内部结构探索进军了。
13、而"开差立"就是已知长方体的体积和长、宽、高的差,用开立方的办法来求它的边长;同时也包括已知圆柱体、球体的体积来求它们的直径的问题。
14、祖冲之认为自秦汉以至魏晋的数百年中研究圆周率成绩最大的学者是刘徽,但并未达到精确的程度,于是他进一步精益钻研,去探求更精确的数值。
15、祖冲之在我国天文学史上第一次提出,月亮相继两次通过黄道、白道的同一交点的时间(即“交点月”)长度为2123日,与现今推算值仅相差十万分之一日,即不到1秒,由于日食、月食(统称交食),都发生在黄白交点附近,所以祖冲之的交点月长度对于日月食预报具有十分重要的意义。
16、祖冲之认为自秦汉以至魏晋的数百年中研究圆周率成绩最大的学者是刘徽,但并未达到精确的程度,于是他进一步精益钻研,去探求更精确的数值。
17、夏如一同学自信大方,她讲述了我国耳熟能详的古代数学家“祖冲之”的故事。故事开始前她抛出一个专业的数学问题引起了全场同学的积极思考,大家聆听着祖冲之的创造发明和贡献,崇敬之心油然而生。
18、为了更加深入了解圆周率,郑元成老师带领同学们开始找寻圆周率的历史,通过历代数学家对圆周率的计算研究和圆周率各个发展阶段的历史与故事,同学们纷纷感叹原来古今中外有这么多数学家在为计算圆周率努力,圆周率可真是拉了一条好长的战线哇,至今人们还在不断计算它!
19、同时,主张决不"虚推古人",决不把自己束缚在古人陈腐的错误结论之中,并且亲自进行精密的测量和仔细的推算。像他自己所说的那样,每每"亲量圭尺,躬察仪漏,目尽毫厘,心穷筹策"。
20、魏晋的著名数学家刘徽在为《九章算术》作注时创立了新的推算圆周率的方法——割圆术,将圆周率的值为边长除以其近似值为14;并且说明这个数值比圆周率实际数值要小一些。刘徽以后,探求圆周率有成就的学者,先后有南朝时代的何承天,皮延宗等人。何承天求得的圆周率数值为14皮延宗求出圆周率值为22/7≈
21、边读边想:祖冲之是谁?他最早计算出了什么,比其他国家早了多少年,他涉猎了哪几个科学领域,他有哪方面是值得我们学习的?圆周率祖冲之名人故事篇6祖冲之是南朝伟大的数学家和天文学家,他是世界上把圆周率算到第七位的第一人,所以圆周率又被称为“祖率”。他在数学和天文学上的贡献,对后世的发展有着很深远的影响。
22、推算出交点月的日数以后,就更能准确地推算出日蚀或月蚀发生的时间。祖冲之在他制订的《大明历》中,应用交点月推算出来的日、月蚀时间比过去准确,和实际出现日、月蚀的时间都很接近。
23、来源:文章素材综合自中国历史故事网,版权归原作者所有,侵删。
24、祖冲之(429-500)的祖父名叫祖昌,在宋朝做了一个管理朝廷建筑的长官。祖冲之长在这样的家庭里,从小就读了不少书,人家都称赞他是个博学的青年。他特别爱好研究数学,也喜欢研究天文历法,经常观测太阳和星球运行的情况,并且做了详细记录。
25、我明白了!”圆周率祖冲之名人故事篇2祖冲之(公元429年4月20日─公元500年)是我国杰出的数学家,科学家。南北朝时期人,汉族人,字文远。生于宋文帝元嘉六年,卒于齐昏侯永元二年。祖籍范阳郡遒县(今河北涞水县)。为避战乱,祖冲之的祖父祖昌由河北迁至江南。祖昌曾任刘宋的“大匠卿”,掌管土木工程;祖冲之的父亲也在朝中做官。祖冲之从小接受家传的科学知识。青年时进入华林学省,从事学术活动。一生先后任过南徐州(今镇江市)从事史、公府参军、娄县(今昆山市东北)令、谒者仆射、长水校尉等官职。其主要贡献在数学、天文历法和机械三方面。
26、宋孝武帝听到他的名气,派他到一个专门研究学术的官署“华林学省”工作。他对做官并没有兴趣,但是在那里,可以更加专心研究数学、天文了。
27、412年,北凉赵厞创作《元始历》,才打破了岁章的限制,规定在六百年中间插入二百二十一个闰月。祖冲之吸取了赵厞的理论,加上他自己的观察,认为十九年七闰的闰数过多,每二百年就要差一天,而赵厞六百年二百二十一闰也不十分准确。
28、家族历代成员较高的科学素养,尤其是他们对数学和天文历法的较深研究,对少年祖冲之有着很好的薰陶作用。祖冲之青年时代曾经到华林学省专门从事学术研究,后来步人仕途,先后在刘宋朝和南齐朝担任南徐州(今江苏镇江)从事史、公府参军、娄县(今江苏昆山)令、谒者仆射、长水校尉等官职。
29、 沈括文武双全,不仅在科学上取得了辉煌的成绩,而且为保卫北宋的疆土也做出过重要贡献。北宋时期,阶级矛盾和民族矛盾都十分尖锐。辽和西夏贵族统治者经常侵扰中原地区,掳掠人口牲畜,给社会经济带来很大破坏。沈括坚定地站在主战派一边,在熙宁七年(公元1074年)担任河北西路察访使和军器监长官期间,他攻读兵书,精心研究城防、阵法、兵车、兵器、战略战术等军事问题,编成《修城法式条约》和《边州阵法》等军事著作,把一些先进的科学技术成功地应用在军事科学上。同时,沈括对弓弩甲胄和刀枪等武器的制造也都作过深入研究,为提高兵器和装备的质量做出了一定贡献。
30、试车成功了,村民们在一旁欢呼雀跃。祖冲之却在一旁思考:如果能做个水碓磨,既能舂米又能磨面不是更好吗?经过反复实践,改进,水碓磨车终于试制成功了,这其中包含着力水、杠杆、凸轮的原理。
31、祖冲之一生钻研自然科学,其主要贡献在数学、天文历法和机械制造三方面。他在刘徽开创的探索圆周率的精确方法的基础上,首次将“圆周率”精算到小数第七位,即在1415926和1415927之间,他提出的“祖率”对数学的研究有重大贡献。直到16世纪,阿拉伯数学家阿尔·卡西才打破了这一纪录。
32、活动最后教师发展中心李旭浩助理主任对本次活动进行了小结,他说道:“此项活动丰富了同学们的课余生活,营造了热爱数学、探索数学奥秘的良好氛围,希望同学们能再接再厉学好数学,用好数学。”
33、于是,狄德罗被告知,一个有学问的数学家用代数证明了上帝的存在,要是他想听的话,这位数学家将当着所有朝臣的面给出这个证明。狄德罗高兴地接受了挑战。第二天,在宫廷上,欧拉朝狄德罗走去,用一种非常肯定的声调一本正经地说:“先生,,因此上帝存在。请回答!”对狄德罗来说,这听起来好像有点道理,他困惑得不知说什么好。
34、像那些生活在山区里的贫苦学生往往要比我们更懂得珍惜,每天天不亮就要起床,背着书包走在曲折泥泞的山间小路上,走了几十里才能到校;每天放学都要借着月亮的光辉才能安全到家。在这样恶劣的环境下,他们却能始终如每天起早贪黑坚持上学。试想,无论是在古代还是在现代,总有人在艰苦的环境下依然能勤奋好学,而我们生活在如此优越的环境下怎能不发愤图强、奋起直追呢!
35、人民网:祖冲之父子的数学研究成就汇集于他的数学专著《缀术》中。这本书极其高深,以至于“学官莫能究其深奥,故废而不理”。在唐朝官学中,《缀术》也被列为必读的十部算经之且需学习4年,年限为各经之首。后来,《缀术》传至朝鲜,但10世纪以后,《缀术》渐渐在各国失传了。尽管今天已无从知道《缀术》的具体内容,但从该书在唐代官学中的学习年限及史书中相关的零星记载,我们仍可以想见其学术价值。
36、《南史》:冲之解钟律博塞,当时独绝,莫能对者。
37、祖冲之的晚年,正值南齐后期,统治阶级内部矛盾尖锐,政治黑暗,社会动荡不安。在这种情况下,祖冲之的研究方向有了很大的变化。他着重研究文学和社会科学,同时也比较关心政治。
38、祖冲之从小就对古书一窍不通,却极爱数学,富有实践精神。幼时,私塾的先生告诉祖冲之,“圆周是直径的3倍”。祖冲之对此产生了疑问,第二天就跑去村头测量车轮,量来量去都与这个结论不符。此后多年,这个疑问一直困扰着他。
39、祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在1415926与1415927之间。并得出了π分数形式的近似值,取为约率,取为密率,其中取六位小数是1419它是分子分母在1000以内最接近π值的分数。
40、祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了《大明历》,开辟了历法史的新纪元。
41、这天,祖冲之显得格外高兴,他摇晃着爷爷的身子直喊:“我明白了!
42、圆周率就是圆周的长度和直径的长度的比。这是一个无限不循环的小数,也就是说它是个没完没了的小数,各位数字的变化又没有规律。通常在计算的时候,我们把圆周率定为314这个数字实际上比圆周率稍微大一点。祖冲之在一千五百年以前就确定,圆周率在31415926至31414927之间,比31416精确得多。在他之后一千年,阿拉伯数学家才打破了这个精确程度的记录。
43、祖冲之(公元429年4月20日─公元500年)是我国杰出的数学家,科学家。南北朝时期人,汉族人,字文远。生于宋文帝元嘉六年,卒于齐昏侯永元二年。祖籍范阳郡遒县(今河北涞水县)。为避战乱,祖冲之的祖父祖昌由河北迁至江南。祖昌曾任刘宋的“大匠卿”,掌管土木工程;祖冲之的父亲也在朝中做官。祖冲之从小接受家传的科学知识。青年时进入华林学省,从事学术活动。一生先后任过南徐州(今镇江市)从事史、公府参军、娄县(今昆山市东北)令、谒者仆射、长水校尉等官职。其主要贡献在数学、天文历法和机械三方面。
44、他特别爱好研究数学,也喜欢研究天文历法,经常观测太阳和星球运行的情况,并且做了详细记录。
45、 沈括在数学方面也有精湛的研究。他从实际计算需要出发,创立了“隙积术”和“会圆术”。沈括通过对酒店里堆起来的酒坛和垒起来的棋子等有空隙的堆体积的研究,提出了求它们的总数的正确方法,这就是“隙积术”,也就是二阶等差级数的求和方法。沈括的研究,发展了自《九章算术》以来的等差级数问题,在我国古代数学史上开辟了高阶等差级数研究的方向。此外,沈括还从计算田亩出发,考察了圆弓形中弧、弦和矢之间的关系,提出了我国数学史上第一个由弦和矢的长度求弧长的比较简单实用的近似公式,这就是“会圆术”。这一方法的创立,不仅促进了平面几何学的发展,而且在天文计算中也起了重要的作用,并为我国球面三角学的发展作出了重要贡献。
46、 授人玫瑰,手留余香!给天下孩子一个健康的人格!
47、我国历代都有研究天文的官,并且根据研究天文的结果来制定历法。到了宋朝的时候,历法已经有很大进步,但是祖冲之认为还不够精确。他根据他长期观察的结果,创制出一部新的历法,叫做“大明历”(“大明”是宋孝武帝的年号)。这种历法测定的每一回归年(也就是两年冬至点之间的时间)的天数,跟现代科学测定的相差只有五十秒;测定月亮环行一周的天数,跟现代科学测定的相差不到一秒,可见它的精确程度了。
48、宋孝武帝想帮助戴法兴,找了一些懂得历法的人跟祖冲之辩论,也一个个被祖冲之驳倒了。但是宋孝武帝还是不肯颁布新历。直到祖冲之死了十年之后,他创制的大明历才得到推行。
49、后来,祖冲之又被调到京城任职。当时的达官贵人为出门显示排场与威风,纷纷指令手下工匠制造指南车。祖冲之经过精心研究和设计,再利用精确圆周率计算,在车前做了个铜铸齿轮盘,随便车子怎么转,车上的铜人总是指着南方。
50、瑞士数学家欧拉早年曾受过良好的神学教育,成为数学家后在俄国宫廷供职。有一次,俄国女皇邀请法国哲学家狄德罗访问她的宫廷。狄德罗试图通过使朝臣改信无神论来证明他是值得被邀请的。女皇厌倦了,她命令欧拉去让这位哲学家闭嘴。
51、祖冲之的主要成就在数学、天文历法和机械制造三个领域。此外祖冲之精通音律,擅长下棋,还写有小说《述异记》。祖冲之著述很多,但大多都已失传。祖冲之是一位少有的博学多才的人物。
52、祖冲之写过《缀术》五卷,被收入著名的《算经十书》中。《隋书》评论"学官莫能究其深奥,故废而不理",认为《缀术》理论十分深奥,计算相当精密,学问很高的学者也不易理解它的内容,在当时是数学理论书籍中最难的一本。
53、由他撰写的《大明历》是当时最科学最进步的历法,对后世的天文研究提供了正确的方法。其主要著作有《安边论》《缀术》《述异记》《历议》等。
54、动脑不如动手,为了探索圆周率,郑元成老师给同学们发放了测量小工具和圆形物件,让大家利用学习工具测量身边这些大小不同的圆的周长和直径,通过计算初步感知圆周率的大小。
55、维纳此言一出,四座皆惊,大家都被他的这道妙题深深地吸引住了。整个会场上的人,都在议论他的年龄问题。 这个年仅18岁的少年博士,后来果然成就了一番大事业:他成为信息论的前驱和控制论的奠基人。
56、祖冲之(429-500),字文远。出生于建康(今南京),祖籍范阳郡遒县(今河北涞水县),中国南北朝时期杰出的数学家、天文学家。
57、 沈括对物理学研究的成果也是极其丰富而珍贵的。《梦溪笔谈》中所记载这方面的见解和成果,涉及力学、光学、磁学、声学等各个领域。特别是他对磁学的研究成就卓著。沈括在《梦溪笔谈》中第一次明确地谈到磁针的偏角问题。在光学方面,沈括通过亲自观察实验,对小孔成像、凹面镜成象、凹凸镜的放大和缩小作用等作了通俗生动的论述。他对我国古代传下来的所谓“透光镜”(一种在背面能看到正面图案花纹的铜镜)的透光原因也做了一些比较科学的解释,推动了后来对“透光镜”的研究。此外,沈括还剪纸人在琴上做过实验,研究声学上的共振现象。沈括还是最早发现地理南北极与地磁场的N,S极并不重合,所以水平放置的小磁针指向跟地理的正南北方向之间有一个很小的偏角。被称为磁偏角。
58、刚开始,他只是看着玩而已。后来,一首儿歌引起了他的深思。儿歌唱道:“初一看不见,初二一根线,初三初四镰刀月,初七初八月半边,一天更比一天胖,直到十五月团圆。十八月迟出,廿二半夜见半圆。一天更比一天瘦,廿三十月难见。”他这才知道,原来月亮的圆缺是有规律的。
59、 1949年新中国成立,华罗庚感到无比兴奋,克服了来自美国政府所带来的种种困难,决心偕家人回国。他们一家五人乘船离开美国,1950年2月到达香港。他在香港发表了一封致留美学生的公开信,信中充满了爱国激情,鼓励海外学子回来为新中国服务。3月11日新华社播发了这封信。1950年3月16日,华罗庚和夫人、孩子乘火车抵达北京。 华罗庚回到了清华园,担任清华大学数学系主任。接着,他受中国科学院院长郭沫若的邀请开始筹建数学研究所。1952年7月,数学所成立,他担任所长。他潜心为新中国培养数学人才,王元、陆启铿、龚升、陈景润、万哲先等在他的培养下成为世界知名的数学家。 回国后短短的几年中,他在数学领域里的研究硕果累累。他写成的论文《典型域上的多元复变函数论》于1957年1月获国家发明一等奖,并先后出版了中、俄、英文版专著;1957年出版《数论导引》;1959年莱比锡首先用德文出版了《指数和的估计及其在数论中的应用》,又先后出版了俄文版和中文版;1963年他和他的学生万哲先合写的《典型群》一书出版。 他为培养青少年学习数学的热情,在北京发起组织了中学生数学竞赛活动,从出题、监考、阅卷,都亲自参加,并多次到外地去推广这一活动。他还写了一系列数学通俗读物,在青少年中影响极大。他主张在科学研究中要培养学术气氛,开展学术讨论。他发起创建了我国计算机技术研究所,也是我国最早主张研制电子计算机的科学家之一。
60、世纪著名数学家诺伯特·维纳,从小就智力超常,三岁时就能读写,十四岁时就大学毕业了。几年后,他又通过了博士论文答辩,成为美国哈佛大学的科学博士。
61、500年(南朝齐永元二年),这位卓越的大科学家去世,享年七十二岁。他的天文历法心血之作《大明历》在510年(梁武帝天监九年)才以《甲子元历》之名颁行。
62、直到三国时期,刘徽提出了计算圆周率的科学方法——“割圆术”,用圆内接正多边形的周长来逼近圆周长。刘徽计算到圆内接96边形,求得π=并指出,内接正多边形的边数越多,所求得的π值越精确。
63、根据《隋书·律历志》关于圆周率(π)的记载:“宋末,南徐州从事史祖冲之,更开密法,以圆径一亿为一丈,圆周盈数三丈一尺四寸一分五厘九毫二秒七忽,朒数三丈一尺四寸一分五厘九毫二秒六忽,正数在盈朒二限之间。密率,圆径一百一圆周三百五十五。约率,圆径周二十二。”祖冲之把一丈化为一亿忽,以此为直径求圆周率。他计算的结果共得到两个数:一个是盈数(即过剩的近似值),为14159一个是朒数(即不足的近似值),为14159
64、高斯是这样算的:1+100=102+99=10·····50+51=10从1加到100有50组这样的数,所以50X101=50布特纳对他刮目相看。
65、祖冲之曾在著作中自述说,从很小的时候起便"专功数术,搜烁古今"。他把从上古时起直至他生活的时代止的各种文献、记录、资料,几乎全都搜罗来进行考察。
66、祖冲之在圆周率方面的研究,有着积极的现实意义,他的研究适应了当时生产实践的需要。他亲自研究度量衡,并用最新的圆周率成果修正古代的量器容积的计算。古代有一种量器叫做“釜”,一般的是一尺深,外形呈圆柱状,祖冲之利用他的圆周率研究,求出了精确的数值。他还重新计算了汉朝刘歆所造的“律嘉量”,利用“祖率”校正了数值。以后,人们制造量器时就采用了祖冲之的“祖率”数值。
67、祖冲之在科学发明上是个多面手,他造过一种指南车,随便车子怎样转弯,车上的铜人总是指着南方;他又造过“千里船”,在新亭江(在今南京市西南)上试航过,一天可以航行一百多里。他还利用水力转动石磨,舂米碾谷子,叫做“水碓磨”。
68、计算圆周率是一件很不容易的事。我们知道,在一个圆里内接正多边形,计算这个正多边形的总的边长,就可以得到圆周的近似值。正多边形的边数越多,总的长跟圆周就越是接近。祖冲之必须从圆的内接正六边形开始,先算内接正十二边形的边长,再算出内接正二十四边形的边长,再算内接正四十八形的边长……边数一倍又一倍地增加,一共翻十一翻,直到算出了内接正一万二千二百八十边形的边长,才能得到这样精密的圆周率。