返回
经典语句网
菜单
经典句子 伤感句子 唯美句子 爱情句子 励志句子 网名大全 精选文案

罗素悖论与第三次数学危机文案汇编65句

来源:经典句子 发布时间:2023-09-11 08:50:35 点击:59次
经典语句网 > 经典句子 > > 罗素悖论与第三次数学危机文案汇编65句

罗素悖论与第三次数学危机

1、在当时的所有民族中为什么只有希腊人认为几何事实必须通过合乎逻辑的论证而不能通过实验来建立?这个原因被称为希腊的奥秘。

2、后来希尔伯特实在忍无可忍,回应道:“把排中律排除在数学之外,就像禁止拳手使用拳头。”

3、 第二次数学危机:十八世纪关于微积分发生的激烈的争论。(罗素悖论与第三次数学危机)。

4、无理数作为无限不循环小数,超出人们对整数比的直观感受,进而暴露数学理论中存在的问题:离散的数量概念的片面性.而芝诺悖论更为全面地揭示了:离散和连续都必然导致矛盾,其中,二分法悖论和阿基里斯悖论揭示了连续的片面性,飞矢不动悖论和运动场悖论揭示了离散的片面性.

5、罗素悖论使整个数学大厦动摇了。无怪乎弗雷格在收到罗素的信之后,在他刚要出版的《算术的基本法则》第2卷末尾写道:"一位科学家不会碰到比这更难堪的事情了,即在工作完成之时,它的基础垮掉了,当本书等待印出的时候,罗素先生的一封信把我置于这种境地"。于是终结了近12年的刻苦钻研。

6、在探索皮亚诺公理系统相容性的过程中,另外一个超级天才又进入了数学家的视野,那就是英国数学家罗素。

7、哥德尔一生在科学上取得了辉煌的成就,他证明了一阶谓词演算的完全性算术形式系统的不完全性,连续统假设和集合论公理的相对协调性等三大难题,被公认为人类历史上继亚里士多德和莱布尼兹之后最伟大的逻辑学家。他独辟蹊径的研究成果犹如智者的棒喝,断然终结了数学家追求绝对可靠的数学基础的幻想"但也使人们对无穷的认识达到了一个更高的境界。他说:“数学不仅是不完全的,还是不可完全的。”结语我们在这里看到数学的矛盾和争论,看到反复斟酌的公理。有人疑惑到底这些公理对不对?到底是信仰还是事实,在矛盾之中,哪个是真理?这是对数学不理解了,数学的研究是从一些非常基本的假设中,应用逻辑来看能够走多远,能够得到什么有用的结论。这些假设只要是自洽的,无关对错,只关是否有用,能否在应用时被接受。构成数学体系称为公理的假设,很多是非常基本近乎定义性的同语反复。还有一些公理被引入,是为了修补支撑已在实践中被广泛应用的数学结果和工具。被排斥的一些公理,不是因为错了,而是假设太强了,在这假设下得不到足够广泛有用的结果。

8、第一次数学危机首先要提到一个人物,毕达哥拉斯:毕达哥拉斯是公元前五世纪古希腊的著名数学家与哲学家。他曾创立了一个合政治、学术、宗教三位一体的神秘主义派别:毕达哥拉斯学派。由毕达哥拉斯提出的著名命题“万物皆数”是该学派的哲学基石。他们主张,“一切数均可表示成整数或整数之比”,这是这一学派的数学信仰。但其学派中的一个成员西帕索斯考虑了一个问题:边长为1的正方形其对角线长度是多少呢?它直接动摇了毕达哥拉斯学派的数学信仰,使毕达哥拉斯学派为之大为恐慌,他们认为西帕索斯是毕达哥拉斯学派的叛徒,就把他投入大海。当时面对这一结论人们毫无办法。这就在当时直接导致了人们认识上的危机,从而导致了西方数学史上一场大的风波,史称“第一次数学危机”。

9、数的算术中有许多一元及二元运算,集合论也有许多针对集合的一元及二元运算。

10、除此而外, 还应该看到: 希尔伯特想把全部数学都纳入于公理化方法形式化的宏伟规划中去的愿望, 已经由奥地利数学家哥德尔(G¨odel) 在1931年发表的“不完全性定理”所表明: 那是永远不能彻底实现的。

11、實質上未被推翻,但是最後被更嚴謹的極值公理取代。

12、但是來到當代後被成功復活,不過用途比較小眾,而且其邏輯基礎非常複雜。

13、三大数学流派是围绕数学的哲学基础问题进行的不同探讨而形成的三大学派,主要指逻辑主义、形式主义和直觉主义三大学派。其形成主要是在1900年到1930年这三十年间。代表人物有罗素、希尔伯特、布劳威尔。

14、布劳威尔不认同,他坚持认为第三种情况是存在的。

15、十九世纪下半叶,康托尔创立了著名的集合论,在集合论刚产生时,曾遭到许多人的猛烈攻击。但不久这一开创性成果就为广大数学家所接受了,并且获得广泛而高度的赞誉。数学家们发现,从自然数与康托尔集合论出发可建立起整个数学大厦。因而集合论成为现代数学的基石。

16、危机产生后,数学家纷纷提出自己的解决方案。人们希望能够通过对康托尔的集合论进行改造,通过对集合定义加以限制来排除悖论,这就需要建立新的原则。“这些原则必须足够狭窄,以保证排除一切矛盾;另一方面又必须充分广阔,使康托尔集合论中一切有价值的内容得以保存下来。”1908年,策梅罗在自已这一原则基础上提出第一个公理化集合论体系,后来经其他数学家改进,称为ZF系统。这一公理化集合系统很大程度上弥补了康托尔朴素集合论的缺陷。除ZF系统外,集合论的公理系统还有多种,如诺伊曼等人提出的NBG系统等。公理化集合系统的建立,成功排除了集合论中出现的悖论,从而比较圆满地解决了第三次数学危机。但在另一方面,罗素悖论对数学而言有着更为深刻的影响。它使得数学基础问题第一次以最迫切的需要的姿态摆到数学家面前,导致了数学家对数学基础的研究。而这方面的进一步发展又极其深刻地影响了整个数学。如围绕着数学基础之争,形成了现代数学史上著名的三大数学流派,而各派的工作又都促进了数学的大发展等等。

17、    数学史上的三次危机对中国几乎无甚影响。在中国古代数学中无理数的产生极为自然,由开方产生的无理数,其操作运算就是它的自然解释;而极限的思想方法在中国数学中只是作为一种数学处理方法而已,丝毫没有什么危机。

18、希尔伯特是在 23 岁时以一篇关于不变量理论的论文挤身数学界的,在这篇论文中,它使用了非构造性的证明,而他的证明正是依赖于对无穷的对象使用排中律。

19、在魏尔斯特拉斯“分析算术化”运动的引领下,戴德金、康托尔包括魏尔斯特拉斯都提出了自己的实数理论。

20、   第一次危机是古希腊时代,由于不可公度的线段——无理数的发现与一些直觉的经验相抵触而引发的;

21、到了十九世纪,出现了一批杰出的数学家,他们积极地为微积分学的奠基工作而努力。首先要提到的是捷克的哲学家和数学家波尔查诺。他开始将严格的论证引入导数学分析重。1816年他在二项展开公式的证明中,明确地提出了级数收敛的概念。同时对极限、连续、变量有了较深入的理解。特别是他曾写出《无穷的悖论》一书,书中包含许多真知灼见。可惜,在他去世两年后该书才得以出版。

22、如果没有康托的抽象集合论和数理逻辑的近代发展, 数学公理方法的形式化也不可能获得新的进展。

23、    他对实数理论和极限理论的基础集合论给以了很高的评价,但事隔两年,在1902年突然传出了一个惊人的消息: 著名的哲学家、数学家罗素发现了集合论的概念本身岀现了矛盾。这就是罗素提出的著名集合悖论:“宇宙是不存在的。”

24、 1897年,福尔蒂揭示了集合论的第一个悖论;两年后,康托发现了很相似的悖论,它们涉及到集合论中的结果。1902年,罗素发现了一个悖论,它除了涉及集合概念本身外不涉及别的概念。

25、计划的第二步是证明数学是完整的。这个完整包含了两个方面,一是完备,二是一致。所有真的陈述都能被证明,这被称为数学的完备性;另一方面,不会推出自相矛盾的陈述,则被称为数学的一致性。完备性保证了我们能证明所有的真理,只要是真的就可以证明;一致性确保我们在不违背逻辑的前提下获得的结果是有意义的,不会出现一个陈述,它既是真的又是假的。

26、在数学的历史上,曾有过三次非常重大的危机,而这看似是危机,其实都很大程度地完善了数学理论,推动了数学的发展。

27、在这篇论文中,希尔伯特使用了非构造性的证明,也就是说他只能证明某个数学对象的存在性,却无法将它具体指出。他的证明依赖于对无穷的对象使用排中律,从而遭到了不少人的质疑。所谓的排中律,指的就是一件事非真即假,那么为什么针对这个还有反对的意见呢?罗素悖论引发出数学三个流派集合论是在19 世纪末由康托建立的, 使集合概念成为最基本、应用最广的一个概念,人们相信,全部数学的基础理论可用集合概念统一起来。1900 年,在巴黎召开的国际数学家大会上, 庞加莱曾满怀信心的说:“ 现在我们可以说, 完全的严格化已经达到了。” 可是这话说出后还不到3 年,英国数学家罗素于1902 年给德国数学家弗雷格的信中提出一个集合悖论,使数学基础发生动摇,用弗雷格的话说:“突然它的一块基石崩塌下来了。”

28、1734年,英国哲学家、大主教贝克莱发表《分析学家或者向一个不信正教数学家的进言》,矛头指向微积分的基础--无穷小的问题,提出了所谓贝克莱悖论。他指出:"牛顿在求xn的导数时,采取了先给x以增量0,应用二项式(x+0)n,从中减去xn以求得增量,并除以0以求出xn的增量与x的增量之比,然后又让0消逝,这样得出增量的最终比。这里牛顿做了违反矛盾律的手续──先设x有增量,又令增量为零,也即假设x没有增量。"他认为无穷小dx既等于零又不等于零,召之即来,挥之即去,这是荒谬,"dx为逝去量的灵魂"。无穷小量究竟是不是零?无穷小及其分析是否合理?由此而引起了数学界甚至哲学界长达一个半世纪的争论。导致了数学史上的第二次数学危机。  

29、承认无穷集合、承认无穷基数,就好象一切灾难都出来了,这就是第三次数学危机的实质。尽管悖论可以消除,矛盾可以解决,然而数学的确定性却在一步一步地丧失。现代公理集合论中一大堆公理,简直难说孰真孰假,可是又不能把它们都消除掉,它们跟整个数学是血肉相连的。所以,第三次数学危机表面上解决了,实质上更深刻地以其它形式延续着。

30、罗素悖论曾被以多种形式通俗化。其中最著名的是罗素于1919年给出的,它涉及到某村理发师的困境。理发师宣布了这样一条原则:他给所有不给自己刮脸的人刮脸,并且,只给村里这样的人刮脸。当人们试图回答下列疑问时,就认识到了这种情况的悖论性质:"理发师是否自己给自己刮脸?"如果他不给自己刮脸,那么他按原则就该为自己刮脸;如果他给自己刮脸,那么他就不符合他的原则。罗素悖论的精确表述:如果存在一个集合A={x | x∉ x},那么A∈A是否成立?如果它成立,那么A∈A,不满足A的特征性质。如果它不成立,A就满足了特征性质。罗素悖论使整个数学大厦动摇了。无怪乎弗雷格在收到罗素的信之后,在他刚要出版的《算术的基本法则》第2卷末尾写道:"一位科学家不会碰到比这更难堪的事情了,即在工作完成之时,它的基础垮掉了,当本书等待印出的时候,罗素先生的一封信把我置于这种境地"。于是终结了近12年的刻苦钻研。承认无穷集合,承认无穷基数,就好像一切灾难都出来了,这就是第三次数学危机的实质。尽管悖论可以消除,矛盾可以解决,然而数学的确定性却在一步一步地丧失。现代公理集合论的大堆公理,简直难说孰真孰假,可是又不能把它们都消除掉,它们跟整个数学是血肉相连的。所以,第三次危机表面上解决了,实质上更深刻地以其它形式延续着。对于第三次数学危机,有人认为只是数学基础的危机,与数学无关。这种看法是片面的。诚然,问题涉及数理逻辑和集合论,但它一开始就牵涉到无穷集合,而现代数学如果脱离无穷集合就可以说寸步难行。因为如果只考虑有限集合或至多是可数的集合,那绝大部分数学将不复存在。而且即便这些有限数学的内容,也有许多问题要涉及无穷的方法,比如解决数论中的许多问题都要用解析方法。由此看来,第三次数学危机是一次深刻的数学危机。

31、罗素悖论的产生震撼了整个数学界,号称天衣无缝,绝对正确的数学出现了自相矛盾。无怪乎弗雷格在收到罗素的信之后,在他刚要出版的《算术的基本法则》第2卷末尾写道:"一位科学家不会碰到比这更难堪的事情了,即在工作完成之时,它的基础垮掉了,当本书等待印出的时候,罗素先生的一封信把我置于这种境地"。于是终结了近12年的刻苦钻研。

32、康托尔创立的集合论可以说是数学的一个基本的分支学科,研究对象是一般集合。集合论在数学中占有一个独特的地位,它的基本概念已渗透到数学的所有领域。集合论或集论是研究集合(由一堆抽象物件构成的整体)的数学理论,包含了集合、元素和成员关系等最基本的数学概念。简单的集合知识我们在高中的时候就已经接触,大家可以简单回忆一下。

33、第二次数学危机是17世纪发现的微积分引发的,很多数学家认为微积分的基础很模糊,有缺陷,原因在于当时还不能正确认识极限的概念。

34、那么如果希尔伯特的这三个计划完成了,意味着什么?首先,一致性是很重要的,因为我们不能接受比如说“哥德巴赫猜想既对又不对”这样的结论,一致性无疑就保证了自相矛盾的情况不会出现。在保证数学的一致性这个前提下,我们又有数学的完备性,也就是说只要是真的都可以证明。

35、康托创立集合论,是基于解决微积分的逻辑基础问题,为了使微积分里面采用的无穷小概念有一个清晰的逻辑基础。

36、布劳威尔对数学对象的观点直接导出了他对数学所用的逻辑观点;认为“ 逻辑不是发现真理的绝对可靠的工具” ,并认为,在真正的数学证明中不能使用排中律,因为排中律和其他经典逻辑规律是从有穷集抽象出来的规律,因此不能无限制的使用到无穷集上去。同样不能使用反证法。

37、为了证明自己的观点,康托尔提出了“超越数”的概念,所谓超越数就是不能满足任何整系数代数方程的实数,但是他没有举出具体的超越数例子,这一下引起了当时同行们的怀疑和愤怒。康托尔面临各种质疑由于过度紧张得了精神病,最终死在了精神病院里。

38、几十年后,罗素悖论产生,提出者当然是罗素。他指出:如果一个理发师只给不自己理发的人理发。那么他应该给自己理发吗?细心的人发现,这个理发师怎么做都不对,并且又符合集合的定义,这个悖论严重挑战了集合中的“确定性”!用集合的语言来说:如果存在一个集合A={x | x∉x },那么A∈A是否成立?如果它成立,那么A∈A,不满足A的特征性质。如果它不成立,A就满足了特征性质。后来,德国数学家策梅罗,寻找到一种解决办法,把集合论建立在一组公理之上,目的是回避悖论。后来通过一系列数学家的完善,形成了一个集合论的公理系统,在这个系统之内没有悖论。这套系统也叫做“ZF公理系统”

39、承认无穷集合、承认无穷基数,就好像一切灾难都出来了,这就是第三次数学危机的实质。尽管悖论可以消除,矛盾可以解决,然而数学的确定性却在一步一步地丧失。现代公理集合论中一大堆公理,简直难说孰真孰假,可是又不能把它们都消除掉,它们跟整个数学是血肉相连的。所以,第三次数学危机表面上解决了,实质上更深刻地以其它形式延续着。

40、悖论在当代逻辑中获得了新的作用,它们导致了新定理的发现(通常是负面的结果,例如不可证明性和不可判定性)。逻辑的几个基本概念发展过程,之所以已经到了目前的状态,通常是得益于解决悖论的各种尝试。对于集合(set)和类(collection)的概念,标准古典逻辑的基本句法和语义概念(给定顺序的逻辑语言,可满足性,可定义性的概念)出现而言,尤其如此。

41、20世纪20年代,在集合论不断发展的基础上,大数学家希尔伯特向全世界的数学家抛出了个宏伟计划,其大意是建立一组公理体系,使一切数学命题原则上都可由此经有限步推定真伪,这叫做公理体系的"完备性";希尔伯特还要求公理体系保持"独立性"和"无矛盾性"。希尔伯特的计划也确实有一定的进展,几乎全世界的数学家都乐观地看着数学大厦即将竣工。

42、数学史上的第三次危机,是由1897年的突然冲击而出现的,到现在,从整体来看,还没有解决到令人满意的程度。这次危机是由于在康托尔的一般集合理论的边缘发现悖论造成的。由于集合概念已经渗透到众多的数学分支,并且实际上集合论成了数学的基础,因此集合论中悖论的发现自然地引起了对数学的整个基本结构的有效性的怀疑。

43、集合论中悖论的存在,明确地表示某些地方出了毛病。自从发现它们之后,人们发表了大量关于这个课题的文章,并且为解决它们作过大量的尝试。就数学而论,看来有一条容易的出路:人们只要把集合论建立在公理化的基础上,加以充分限制以排除所知道的矛盾。

44、第一次数学危机表明,几何学的某些真理与算术无关,几何量不能完全由整数及其比来表示。反之,数却可以由几何量表示出来。整数的尊祟地位受到挑战,古希腊的数学观点受到极大的冲击。于是,几何学开始在希腊数学中占有特殊地位。同时也反映出,直觉和经验不一定靠得住,而推理证明才是可靠的。从此希腊人开始从“自明的”公理出发,经过演绎推理,并由此建立几何学体系。这是数学思想上的一次革命,是第一次数学危机的自然产物。

45、突然有一天,他们研究边长为1的正方形,发现对角线不能用一个已知的数来表示,其实我们今天知道这个数是个无理数,即根号二。

46、其实直到今天,从整体上将罗素悖论还没有解决到令人满意的程度。但这个悖论确实推动了诸多数学基础研究的发展。

47、   其实,在罗素之前集合论中就已经发现了悖论。早在1897年,布拉利—福尔蒂已公开发表了最大序数悖论。1899年康托尔本人也发现了最大基数悖论。当时因为这两个悖论牵涉到较为复杂的理论,人们认为可能是由于在其中某些环节处不小心引入的一些错误所致,人们对消除这些悖论也是乐观的,所以它们只是在数学界揭起了一点小涟漪,未能引起大的注意。但罗素悖论则不同,这一悖论相当简明,而且所涉及到的只是集合论中最基本的方面,以致几乎没有什么可以辩驳的余地,这就大大动摇了集合论的基础。  为了消除悖论,许多科学家开始分析悖论产生之因,寻求解决方案,他们规划了两种解决途径,其一是将整个集合论抛弃,把数学建立在别的理论基础上;其二是对康托尔的集合论加以改造,将集合论公理化。经过探索,他们选择了第二条解决途径。

48、第一次这样的尝试是策梅罗于1908年做出的,以后还有多人进行了加工。但是,此程序曾受到批评,因为它只是避开了某些悖论,而未能说明这些悖论;此外,它不能保证将来不出现别种悖论。

49、解决这场危机办法之一是把集合论建立在一组公理之上,以回避悖论。首先进行这个工作的是德国数学家策梅罗,他提出七条公理,建立了一种不会产生悖论的集合论,又经过德国的另一位数学家弗芝克尔的改进,形成了一个无矛盾的集合论公理系统(即所谓ZF公理系统),这场数学危机到此缓和下来。现在,通过离散数学的学习,知道集合论主要分为Cantor集合论和Axiomatic集合论,集合是先定义了全集I,空集,在经过一系列一元和二元运算得来。而在七条公理上建立起来的集合论系统避开了罗素悖论,使现代数学得以发展。

50、为了这个目标,他制定了著名的希尔伯特计划。

51、真实性悖论(veridicalparadox):是一个无矛盾的命题。其产生的结果看起来很荒谬,但事实证明是正确的。其推理过程和其结果都没有问题,不是真正的悖论。如,希尔伯特旅馆悖论。

52、 罗素悖论曾被以多种形式通俗化,其中最著名的是罗索于1919年给出的,它讲的是某村理发师的困境。理发师宣布了这样一条原则:他只给不自己刮胡子的人刮胡子。当人们试图答复下列疑问时,就认识到了这种情况的悖论性质:“理发师是否可以给自己刮胡子?”如果他给自己刮胡子,那么他就不符合他的原则;如果他不给自己刮胡子,那么他按原则就该为自己刮胡子。

53、在描述罗素悖论之前,我们注意下面的事实:一个集合或者它本身的成员,或者不是它本身的成员。

54、19世纪70年代,康托尔创立了集合论,庞加莱在1900年国际数学家大会上宣称:“借助集合论概念,我们可以建造整个数学大厦…”

55、罗素悖论激发了罗素想建立有确定性数学体系的决心。因为有问题有困难才体现天才的价值,所以他提出了一系列公理,试图化解这个集合悖论,并写出了巨著《数学原理》,企图建立一个完美的数学体系,这个数学体系没有悖论,一切由公理出发,所有问题都可以解决。

56、  从历史阶段上看,数学的三次危机分别发生在公元前5世纪、17世纪和19世纪末,都是发生在西方文化大发展的时期,因此,数学危机的产生,都有其一定的文化背景。

57、看不懂?没关系,其实数学发展到二十世纪不是你我这类凡夫俗子能轻易理解的。为了通俗地让大众明白,罗素用人话开始解释:某村的理发师宣布了这样一条原则:他只给不自己刮胡子的人刮胡子。当人们试图答复下列疑问时,就认识到了这种情况的悖论性质:“理发师是否可以给自己刮胡子?”如果他给自己刮胡子,那么他就不符合他的原则;如果他不给自己刮胡子,那么他按原则就该为自己刮胡子。所有罗素悖论也被称之为“理发师悖论”。

58、直到19世纪20年代,一些数学家才比较关注于微积分的严格基础。从波尔查诺、阿贝尔、柯西、狄里赫利等人的工作开始,到威尔斯特拉斯、戴德金和康托的工作结束,中间经历了半个多世纪,基本上解决了矛盾,为数学分析奠定了严格的基础。 悖 论 的 产 生 --- 第 三 次 数 学 危 机

59、 第三次数学危机:康托的一般集合理论的边缘发现悖论。 补充: 专业术语 表达:

60、界定标准是:如果村里的任一村民x,从出生到死亡都从来没有自己给自己刮过脸,即一生中都没有“自己给自己刮脸”的“劣迹”,那么,x是“不给自己刮脸的人”。

61、排中律是一个基本的逻辑定律,也是一个常用的数学技巧,指每一个数学命题要么对,要么错,没有其他可能性。

62、可以看到,“悖论”是矛盾等价式,且具备以下三个要素:

63、经过许多人多年的努力,终于在17世纪晚期,形成了无穷小演算——微积分这门学科。牛顿和莱布尼兹被公认为微积分的奠基者,他们的功绩主要在于:把各种有关问题的解法统一成微分法和积分法;有明确的计算步骤;微分法和积分法互为逆运算。由于运算的完整性和应用的广泛性,微积分成为当时解决问题的重要工具。同时,关于微积分基础的问题也越来越严重。关键问题就是无穷小量究竞是不是零?无穷小及其分析是否合理?由此而引起了数学界甚至哲学界长达一个半世纪的争论,造成了第二次数学危机。

64、18世纪的数学思想的确是不严密的、直观的,强调形式的计算而不管基础的可靠。其中特别是:没有清楚的无穷小概念,从而导数、微分、积分等概念不清楚;无穷大概念不清楚;发散级数求和的任意性等等;符号的不严格使用;不考虑连续性就进行微分,不考虑导数及积分的存在性以及函数可否展成幂级数等等。

上一篇:罗素悖论的简单解释文案汇编44句
下一篇:没有了

相关经典句子

  • 罗素悖论的简单解释文案汇编44句
  • 关于青年人的责任与担当的名言文案汇编25句
  • 近代名人关于责任与担当的名言文案汇编60句
  • 爱心与责任心的名言文案汇编44句
  • 罗素悖论如何解决文案汇编72句
  • 责任与担当的名言金句文案汇编49句
  • 责任与担当的名言哲理文案汇编75句
  • 责任与担当的名言古代文案汇编29句
  • 责任与担当的名言有深意文案汇编35句
  • 责任与担当的名言图片文案汇编67句
  • 体现责任与担当的名言文案汇编26句
  • 责任与担当的名言关于家庭文案汇编43句
  • 青年的责任与担当的名言文案汇编47句
  • 地下城与勇士网名大全【经典网名138个】
  • 小葱拌豆腐与哪位历史人物有关文案汇编35句
  • 特别表示与众不同的意思造句文案汇编22句
  • 经典句子相关栏目

    推荐经典句子

  • 葬爱家族网名文案汇编81句
  • 深夜电台情感独白稿子文案汇编52句
  • 两字词语及解释200个文案汇编20句
  • 外甥打灯笼是什么生肖文案汇编15句
  • 关于夏天的句子10字文案汇编62句
  • 5一10字的拟人句文案汇编46句
  • 简短可爱的小故事文案汇编73句
  • 三年级感恩老师的贺卡文案汇编60句
  • 最新经典句子

  • 罗素悖论与第三次数学危机文案汇编65句
  • 罗素悖论的简单解释文案汇编44句
  • 罗曼罗兰语录文案汇编75句
  • 关于坚持的文言文句子文案汇编64句
  • 坚持不懈的句子50字文案汇编100句
  • 纪伯伦名言大全英文文案汇编55句
  • 瓦尔登湖梭罗简介文案汇编39句
  • 母爱的作文450字文案汇编78句