1、她出生时被误认为男孩,国王把她当男孩抚养,所以她即位宣誓时自称“国王”而非“女王”……对于她长大之后,wiki词条中这样写道:
2、在笛卡尔之前,几何与代数是数学中两个不同的研究领域.笛卡尔站在方法论的自然哲学的高度,认为希腊人的几何学过于依赖于图形,束缚了人的想象力.对于当时流行的代数学,他觉得它完全从属于法则和公式,不能成为一门改进智力的科学.因此他提出必须把几何与代数的优点结合起来,建立一种“真正的数学”。
3、二维的直角坐标系通常由两个互相垂直的坐标轴设定,通常分别称为x-轴和y-轴;两个坐标轴的相交点,称为原点,通常标记为O,既有“零”的意思,又是英语“Origin”的首字母。每一个轴都指向一个特定的方向。这两个不同线的坐标轴,决定了一个平面,称为xy-平面,又称为笛卡尔平面。通常两个坐标轴只要互相垂直,其指向何方对于分析问题是没有影响的,但习惯性地(见右图),x-轴被水平摆放,称为横轴,通常指向右方;y-轴被竖直摆放而称为纵轴,通常指向上方。
4、这个世界并不乏天才,缺少的只是发现天才的那双眼睛和培养天才的正确方式。
5、 在一个平面直角坐标系里,一个三角形的三个点分别在A(-1),B(-3)和C(4)上,你能求出三角形ABC的面积吗?
6、①相对笛卡尔坐标:@dx,dy相对前一点的坐标增量②相对极坐标:@距离
7、今天,我跟大家分享的内容是“笛卡尔和坐标系”的小故事。
8、然而,没过多久,他们的恋情传到了国王的耳朵里。国王大怒,下令马上将笛卡尔处死。在克里斯汀的苦苦哀求下,国王将他放逐回国,公主被软禁在宫中。
9、以太并不是一个新的概念,也并不是由笛卡儿凭空杜撰的,早在古希腊时代就有。以太在古希腊语中大意指的是青天或者上层的空气。亚里士多德认为构成物质的元素除了水、火、土、气之外,还有一种叫以太的元素。亚里士多德等古希腊的先哲们不仅认为神是存在的,而且认为神也会像人类一样需要呼吸,而神呼吸的“空气”就叫以太。以太弥漫在整个太空中,所以亚里士多德认为“自然厌恶真空”。因为与神相关,所以,以太从一开始就具有一层神秘的色彩;可能是神学界也无须向人们展示神仙的“真人秀”,所以,以太并没有太多研究的必要性和市场。以太一直被尘封在魔盒里,直到笛卡儿把它打开。
10、他觉得这是一个无可辩驳的事实:若我思,则我是也。即使我认为的那些都是假的或虚幻的,但思想本身是不容置疑的。如果这个“邪恶天才”愚弄了我,那只是因为我的存在。总之,只要我思考,我就是一个存在的本体。而我头脑中的那个“邪恶天才”就永远无法抑制和取消我的存在。
11、据说这封情书至今仍保存在笛卡尔纪念馆里……
12、为了要知道坐标轴的任何一点,离原点的距离。假设,我们可以刻画数值于坐标轴。那么,从原点开始,往坐标轴所指的方向,每隔一个单位长度,就刻画数值于坐标轴。这数值是刻画的次数,也是离原点的正值整数距离;同样地,背着坐标轴所指的方向,我们也可以刻画出离原点的负值整数距离。称x-轴刻画的数值为x-坐标,又称横坐标,称y-轴刻画的数值为y-坐标,又称纵坐标。虽然,在这里,这两个坐标都是整数,对应于坐标轴特定的点。按照比例,我们可以推广至实数坐标和其所对应的坐标轴的每一个点。这两个坐标就是直角坐标系的直角坐标,标记为(x,y)。 (坐标与笛卡尔的故事)。
13、在笛卡尔的带领下,克里斯汀走进了奇妙的坐标世界,她对曲线着了迷。每天的形影不离也使他们彼此产生了爱慕之心。
14、当时,欧洲大陆正在流行黑死病。身体孱弱的笛卡尔回到法国后不久,便染上重病。在生命进入倒计时的那段日子,他日夜思念的还是街头偶遇的那张温暖的笑脸。
15、其人对事实的认知可能是错误的甚至虚构的,而且我们永远无法确定其真相。
16、什么是哲学?可能至今也没人能下个精准的定义,但是谁都不会怀疑哲学是写给人看的,而不是给阿猫阿狗桌子板凳看的。站在这个角度,笛卡儿的思想就非常正确了,因为同一个事物在不同的人看来有不同的认知,就像西方谚语说的“一百个人眼中有一百个哈姆雷特”,那么哪个才是客观上的哈姆雷特呢?可能莎士比亚甚至哈姆雷特自己都糊涂了,所以认知一个事物时就必须把“人”的因素考虑进来,而不能脱离主体遑论客体是多么客观。
17、比如:已知平面直角坐标系中,点P(m-2,-m+3)在第二象限,则的取值范围是______.
18、不能说笛卡尔的身世是非常幸运的,因为和帕斯卡一样他也经历了人生四大悲苦之一。在他婴儿时生母就患肺结核去世,而他也受到传染,造成体弱多病。
19、有一天法国哲学家、数学家笛卡尔卧病在床。尽管病情很重,但他还在反复思考一个问题:几何图形是直观的,而代数方程是比较抽象的,能不能把几何图形与代数方程结合起来?要想达到此目的,关键是如何把组成几何图形的点和满足方程的每一组数挂上钩,怎样才能把点和数联系起来呢?突然,他看见屋顶角上的一只蜘蛛,拉着丝垂了下来,一会儿功夫,蜘蛛又顺着丝爬上去,在上边左右拉丝。蜘蛛的表演使笛卡尔的思路豁然开朗。他想,可以把蜘蛛看做一个点,蜘蛛的位置可以确定,如果把地面上的墙角作为起点,把交出来的三条线作为三根数轴,那么空间中任意一点的位置就可以用这三根数轴上找到有顺序的三个数。同样道理,用一组数(x,y)可以表示平面上的一个点,平面上的一个点也可以用一组有序实数对来表示,这就是坐标系的雏形。
20、在直角坐标系中有点AB(0),试在坐标系中找一个点C,使得以点O、A、B、C为顶点的四边形为平行四边形。
21、其实在这里成长的孩子们都有过如此的经历,因为总有一天他们会发现圣诞老人原来只是那家卖糖水的可口可乐公司设计的广告人物,世上没有一个陌生人会不计回报地送礼物给他们,原来都是自己的父母和亲朋好友在捉刀--此时,孩子们刚建立起的内心世界就从此崩溃了。
22、1671年牛顿第一个将极坐标系应用于表示平面上的任何一点。直到1691年来自那个大牛家族的雅各布·伯努利才真正系统地研究了极坐标系。
23、如图所示在直角坐标系中,点A(-3),点B现将直角坐标系的原点移到点A处,此时点B的坐标是多少?
24、毕业后的笛卡尔一直对职业选择不定,于是决定游历欧洲各地,用行万里路这个方式来寻求“世界这本大书”中的智慧。
25、笛卡尔是著名的法国哲学家、数学家、物理学家。
26、既然又牵扯到数学,那我们来看看那封信里的公式到底是怎么回事?
27、当然在形而上学——哲学方面,老笛也有特殊的贡献。
28、数学第一次引进变数:把图形看成点的运动轨迹,这个想法很重要!它从指导思想上,改变了传统的几何方法,笛卡尔根据自己的这个想法,在《几何学》中,最早为运动着的点建立坐标,开创了几何和代数挂钩的解析几何。在解析几何中,动点的坐标就成了变数,这是数学第一次引进变数。
29、其人的感官是具有欺骗性的,会使我们远离真理,因为感知本身就是有主观性的。
30、二维的直角坐标系通常由两个互相垂直的坐标轴设定,通常分别称为x-轴和y-轴;两个坐标轴的相交点,称为原点,通常标记为O,既有“零”的意思,又是英语“Origin”的首字母。每一个轴都指向一个特定的方向。这两个不同线的坐标轴,决定了一个平面,称为xy-平面,又称为笛卡尔平面。通常两个坐标轴只要互相垂直,其指向何方对于分析问题是没有影响的,但习惯性地(见右图),x-轴被水平摆放,称为横轴,通常指向右方;y-轴被竖直摆放而称为纵轴,通常指向上方。两个坐标轴这样的位置关系,称为二维的右手坐标系,或右手系。如果把这个右手系画在一张透明纸片上,则在平面内无论怎样旋转它,所得到的都叫做右手系;但如果把纸片翻转,其背面看到的坐标系则称为“左手系”。这和照镜子时左右对掉的性质有关。
31、 y=a*(2*sin(t)-sin(2*t))